समीकरण $\sqrt{3 x^{2}+x+5}=x-3$, जहाँ $x$ वास्तविक है, का / के
कोई हल नहीं हैं।
ठीक एक हल है।
ठीक दो हल हैं।
ठीक चार हल हैं।
मान लीजिये कि $a, b, c$ शुन्येतर $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $a+b+c=01$ यदि $q=a^2+b^2+c^2$ तथा $r=a^4+b^4+c^4$ हो तो, निम्नलिखित में से कौन सा कथन आवश्यक रूप से सही है?
समीकरण $\mathrm{e}^{\sin x}-2 \mathrm{e}^{-\sin x}=2$ के हलों की संख्या है
समीकरणों $6 x+4 y+z=200$ एवं $x+y+z=100$ के अरुणात्मक $(non-negative)$ पूर्णांक हलों की संख्या क्या होगी ?
सभी $a \in \mathbb{R}$, जिनके लिए समीकरण $\mathrm{x}|\mathrm{x}-1|+|\mathrm{x}+2|+\mathrm{a}=0$ का मात्र एक वास्तविक मूल है :
यदि ${x^2} + px + 1$, व्यंजक $a{x^3} + bx + c$ का एक गुणनखण्ड हो, तो